Fast acquisition aperture correction in prestack depth migration using beamlet decomposition

Author:

Cao Jun1,Wu Ru-Shan1

Affiliation:

1. University of California, Department of Earth and Planetary Sciences/Institute of Geophysics and Planetary Physics, Santa Cruz, California, U.S.A. .

Abstract

Wave-equation-based acquisition aperture correction in the local angle domain can improve image amplitude significantly in prestack depth migration. However, its original implementation is inefficient because the wavefield decomposition uses the local slant stack (LSS), which is demanding computationally. We propose a faster method to obtain the image and amplitude correction factor in the local angle domain using beamlet decomposition in the local wavenumber domain. For a given frequency, the image matrix in the local wavenumber domain for all shots can be calculated efficiently. We then transform the shot-summed image matrix from the local wavenumber domain to the local angle domain (LAD). The LAD amplitude correction factor can be obtained with a similar strategy. Having a calculated image and correction factor, one can apply similar acquisition aperture corrections to the original LSS-based method. For the new implementation, we compare the accuracy and efficiency of two beamlet decompositions: Gabor-Daubechies frame (GDF) and local exponential frame (LEF). With both decompositions, our method produces results similar to the original LSS-based method. However, our method can be more than twice as fast as LSS and cost only twice the computation time of traditional one-way wave-equation-based migrations. The results from GDF decomposition are superior to those from LEF decomposition in terms of artifacts, although GDF requires a little more computing time.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3