An efficient illumination compensation method for reverse time migration

Author:

Zhou Yang1ORCID

Affiliation:

1. College of Geophysics, Chengdu University of Technology Chengdu China

Abstract

AbstractBy directly solving the full two‐way wave equation, reverse time migration has superiority over other imaging algorithms in handling steeply dipping structures and other complicated geological models. Moreover, by incorporating the asymptotic inversion operator into reverse time migration imaging condition, the imaging algorithm is able to give a quantitative estimation of parameter perturbation in high‐frequency approximation sense. However, because conventional asymptotic inversion only accounts for geometrical spreading, uneven illumination due to irregular acquisition geometry and inhomogeneous subsurface at each image point is neglected. The omit of illumination compensation significantly affects the imaging quality. Wave‐equation‐based illumination compensation methods have been extensively studied in the past. However, the traditional wave‐equation‐based illumination compensation methods usually require high computational cost and huge storage. In this paper, we propose an efficient wave‐equation‐based illumination compensation method. Under high‐frequency approximation, we first define a Jacobian determinant to measure the regularity of subsurface illumination, and then illumination compensation operators are proposed based on the Jacobian. Through boundary integration, we further express the illumination compensation operators through extrapolated wavefields; the explicit computation of asymptotic Green's functions is thus avoided, and an efficient illumination compensation implementation for reverse time migration is achieved. Numerical results with both synthetic and field data validate the effectiveness and efficiency of the presented method.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3