Reverse‐time wave‐field extrapolation, imaging, and inversion

Author:

Esmersoy Cengiz1,Oristaglio Michael2

Affiliation:

1. Schlumberger‐Doll Research, Old Quarry Road, Ridgefield, CT 06877-4108

2. Etudes de Productions Schlumberger, 26 rue de la Caveé, B.P. 202, 92142, Clamart, France

Abstract

The scattered wave field propagated backward in time into an arbitrary background medium is related via a volume integral to perturbations in velocity about the background, which are expressed as a scattering potential. In general, there is no closed‐form expression for the kernel of this integral representation, although it can be expressed asymptotically as a superposition of plane waves backpropagated from the receiver array. When the receiver array completely surrounds the scatterer, the kernel reduces to the imaginary part of the Green’s function for the background medium. This integral representation is used to relate the images obtained by imaging algorithms to the actual scattering potential. Two such relations are given: (1) for the migrated image, obtained by deconvolving the extrapolated field with the incident field; and (2) for the reconstructed image, obtained by applying a one‐way wave operator to the extrapolated field and then deconvolving by the incident field. The migrated image highlights rapid changes in the scattering potential (interfaces), whereas the reconstructed image can, under ideal conditions, be a perfect reconstruction of the scattering potential. “Ideal” conditions correspond to (1) weak scattering about a smoothly varying background medium, (2) a receiver array with full angular aperture, and (3) data of infinite bandwidth. Images obtained from a multioffset vertical seismic profile (VSP) illustrate some of the practical differences between the two imaging algorithms. The reconstructed image shows a much clearer picture of the target (a reef structure), in part because the one‐way imaging operator eliminates artifacts caused by the limited aperture of the receiver array.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3