Elastic reverse time migration of marine walkaway vertical seismic profiling data

Author:

Hokstad Ketil1,Mittet Rune2,Landrø Martin2

Affiliation:

1. IKU Petroleum Research, N-7034 Trondheim, Norway, and Norwegian University of Science and Technology, N-7034 Trondheim, Norway.

2. IKU Petroleum Research.

Abstract

Walkaway vertical seismic profiling (VSP) acquisition with three‐component geophones allows for direct measurement of compressional as well as shear energy. This makes full elastic reverse time migration an attractive alternative for imaging data. We present results from elastic reverse time migration of a marine walkaway VSP acquired offshore Norway. The reverse time migration scheme is based on a high‐order finite‐difference solution to the two‐way elastic wave equation. Depth images of the subsurface are constructed by correlation of forward‐ and back‐propagated elastic wavefields. In the walkaway VSP configuration, the number of shots is much larger than the number of geophone levels. Using processing methods operating in the shot/receiver domain, it is advantageous to use the reciprocal relationship between the walkaway VSP and the reverse VSP configurations. We do this by imaging each component of each geophone level as a reverse VSP common shot gather. The final images are constructed by stacking partial images from each level. The depth images obtained from the vertical components reveal the major characteristics of the geological structure below geophone depth. A graben in the base Cretaceous unconformity and a faulted coal layer can be identified. The horizontal components are more difficult to image. Compared to the vertical components, the horizontal component images are more corrupted by migration artifacts. This is because the horizontal component images are more sensitive to aperture effects and to the shear‐wave velocity macromodel. When converted to two‐way time, the migration results tie well with the surface seismic section. Comparison of fully elastic and acoustic reverse time migration shows that the vertical component is dominantly PP-reflected events, whereas the horizontal components get important contributions from PS-converted energy. The horizontal components also provide higher resolution because of the shorter wavelength of the shear waves.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3