Cooperative joint inversion of 3D seismic and magnetotelluric data: With application in a mineral province

Author:

Takam Takougang Eric M.1,Harris Brett1,Kepic Anton1,Le Cuong V. A.1

Affiliation:

1. Deep Exploration Technology Cooperative Research Centre, Adelaide Airport, Southern Australia, Australia and Curtin University, Department of Exploration Geophysics, Kensington, Western Australia, Australia..

Abstract

The integration of different geophysical data has the potential to provide more accurate estimate of subsurface rock properties. Several methodologies and attempts have been developed over the years with the objective of reducing exploration risk. We have developed a cooperative joint-inversion approach intended to facilitate recovery of acoustic impedance (AI) using seismic and magnetotelluric (MT) data. In this approach, the MT data provided a pathway for iteratively building large-scale low-frequency information content not directly recoverable from the seismic data themselves. The MT data provided complementary information to seismic, especially in seismically complex terrains such as overthrust belts, subbasalt and subsalt, carbonate reefs or for targets below deep cover containing limestone, concretionary layers, or basalt. On the other hand, the seismic data provided structural information necessary to derive accurate resistivity models from MT inversion and small-scale features during seismic impedance inversion. The connections between resistivity and the elastic property of rocks are obtained from petrophysical relationships derived from available borehole data, or if not available, from empirical relationships. We tested our technique on synthetic and field data. The application of cooperative joint inversion to 3D seismic and MT data sets acquired in a mineral province made it possible to recover AI distribution across a wide range of geologic environments. The resulting rock property images provided a direct link to geology that is exceedingly difficult, if not impossible, to extract from the individual data sets.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3