Deep Structure of Nanling-Xuancheng Ore District, Eastern China: Insights from Integrated Geophysical Exploration

Author:

Guo Dong12,Lan Xueyi2,Lu Sanming3,Zhang Yuanyuan2,Ding Wenxiang2,You Miao2,Zhang Kun4,Zhao Lili3,Wang Yunyun2,Zhang Shasha2,Zhang Huijie2,Tao Long2

Affiliation:

1. School of Geophysics and Measurement-Control Technology, East China University of Technology, Nanchang 330013, China

2. Geological Exploration Technology Institute of Anhui Province, Hefei 230041, China

3. Public Geological Survey Management Center of Anhui Province, Hefei 230091, China

4. China Deep Exploration Center-SinoProbe Center, Chinese Academy of Geological Sciences, Beijing 100037, China

Abstract

As the depth of mineral exploration increases, integrated geophysical methods are increasingly playing a crucial role in prospecting deep structures at the district scale. The Nanling-Xuancheng ore district is the eighth ore district in the middle-lower Yangtze metallogenic belt in China. To reveal the deep structure of the mining district, this study mainly focuses on regional high-precision gravity and magnetic data and integrates the interpretation of magnetotelluric and reflection seismic data from a key area. By using a 2.5D joint inversion method with prior information constraints, new insights into the deep structures, tectonic deformation, and magmatic activity are obtained. Structurally, the Nanling-Xuancheng ore district presents a structural pattern of “two uplifts and two depressions” composed of multi-level thrust-overturned and folds formed by Mesozoic depressions, which has a three-layer structure in the vertical direction (shallower than 10 km). Tectonically, the main faults in the study area trend NW, which intersect with NE-trending and EW-trending faults to form a branching structure from deep to shallow. The fault intersections provide pathways for magma intrusion. The distribution of deep-seated concealed magmatic rocks shows the characteristic pattern of “a primary magma source spawning multiple subsidiary intrusion”.

Funder

Anhui Public Welfare Geological Work Project

Anhui Provincial Natural Science Foundation

National Key R&D Program of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3