High-precision Fourier forward modeling of potential fields

Author:

Wu Leyuan1,Tian Gang1

Affiliation:

1. Zhejiang University, Department of Earth Science, Hangzhou, China..

Abstract

We analyzed the numerical forward methods in the Fourier domain for potential fields. Existing Fourier-domain forward methods applied the standard fast Fourier transform (FFT) algorithm to inverse transform a conjugate symmetrical spectrum into a real field. It had significant speed advantages over space-domain forward methods but suffered from problems including aliasing, imposed periodicity, and edge effect. Usually, grid expansion was needed to reduce these errors, which was equivalent to the numerical evaluation of the oscillatory Fourier integral using the trapezoidal rule with smaller steps. We tested a high-precision Fourier-domain forward method based on a combined use of shift-sampling technique and Gaussian quadrature theory. The trapezoidal rule applied by the standard FFT algorithm to evaluate the continuous Fourier transform was modified by introducing a shift parameter [Formula: see text]. By choosing optimum values of [Formula: see text] as Gaussian quadrature nodes, we developed a Gauss-FFT method for Fourier forward modeling of potential fields. No grid expansion was needed, the sources can be set near the boundary of the fields or even go beyond the boundary. The Gauss-FFT method converged to the space-domain solution much faster than the standard FFT method with grid expansion. Forward modeling results almost identical to space-domain ones can be obtained in less time. Numerical examples, of both simple and complex 2D and 3D source forward modeling, revealed the reliability and adaptability of the method.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3