CONTINUOUS SPECTRUM OF THE TOTAL‐MAGNETIC‐FIELD ANOMALY DUE TO A RECTANGULAR PRISMATIC BODY

Author:

Bhattacharyya B. K.1

Affiliation:

1. Geological Survey of Canada, Ottawa 4, Ontario

Abstract

The Fourier transform of the total‐magnetic‐field anomaly due to a rectangular prismatic body with arbitrary magnetization yields the two‐dimensional spectrum of the anomaly. In the expression for the spectrum the individual effects of the horizontal and vertical dimensions of the body appear as separate factors. Another factor in the expression takes into account the combined influence of the orientation of the magnetization vector and the dip and declination of the earth’s magnetic field. The expression for the two‐dimensional spectrum is used to obtain analytical formulas of the spectra for magnetic‐field values along profiles parallel to the two horizontal axes of the body. This theoretical study provides a quantitative picture of the shift of the spectrum to the low‐frequency end with increase in either depth or horizontal dimension, or in both, of the magnetized body. It has thus been possible to realize the feasibility of a method for separating the effects of near‐surface high‐amplitude components from those of deep crustal sources in total‐field aeromagnetic maps. Separation of these effects is, however, not unique because of spectral overlap between anomalies due to “shallow” and “deep” sources. A detailed discussion has been made about the characteristics of amplitude and phase spectra of anomalies due to prismatic bodies of differing dimensions. The spectra of anomalies seem to be useful in rapid estimation of the dimensions of a body under suitable conditions. The effect of demagnetization on the fields due to prismatic bodies has been ignored in this paper.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3