Time-domain multiscale full-waveform inversion using the rapid expansion method and efficient step-length estimation

Author:

dos Santos Adriano W. G.1,Pestana Reynam C.2

Affiliation:

1. Formerly Federal University of Bahia (UFBA), National Institute of Science — Petroleum Geophysics (INCT-GP/CNPq), Salvador, Brazil; presently Compagnie Générale de Géophysique (CGG), Houston, Texas, USA..

2. UFBA, Center for Research in Geophysics and Geology (CPGG) and National Institute of Science — Petroleum Geophysics (INCT-GP/CNPq), Salvador, Brazil..

Abstract

Full-waveform inversion (FWI) is rapidly becoming a standard tool for high-resolution velocity estimation. However, the application of this method is usually limited to low frequencies due to the high computational cost of the wavefield propagation and the inversion scheme. To mitigate this problem, we have developed a rapid expansion method (REM) for numerical wavefield extrapolation inside the FWI workflow. This method approximated the partial time derivative of the wave equation using Chebyshev polynomials instead of the conventional finite-difference (FD) approximation. This allowed the REM to accurately propagate wavefields with bigger time steps, thus improving the computational efficiency of FWI. We have compared high-frequency FWI results using REM and the traditional FD approximation of the time derivative to illustrate the ability of REM to remain stable and free of numerical dispersion noise even with large grid and time samplings. In addition, we studied a step-length estimation scheme with the objective of avoiding an extra forward wavefield propagation during the line search at each FWI iteration. In this scheme, we estimated the step-length value based on prior iterations and validated this value using the Wolfe conditions. If the value was accepted, then the forward modeling was availed in the next iteration and no extra propagation was necessary. We tried seven different step-length estimation methods, from which we highlighted the adaptive Barzilai-Borwein method when combined with the steepest-descent inversion scheme, and the unitary step length for the L-BFGS algorithm. Through synthetic numerical results, we showed how this scheme could achieve convergence, while keeping the number of extra forward modelings way below the number of FWI iterations.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3