Accelerating full waveform inversion through Adaptive Gradient Optimization methods and Dynamic Simultaneous Sources

Author:

Bernal-Romero Marcos1,Iturrarán-Viveros Ursula1

Affiliation:

1. Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Escolar S/N; Coyoacán C.P. 04510; México D.F

Abstract

Summary Full-Waveform Inversion (FWI) is a procedure based on the minimization of a misfit (or cost) function applied to the difference between synthetic waveforms and real seismic traces that derives high-resolution velocity models. This is achieved through the iterative adjustment of the velocity model and/or some other physical parameters of the Earth’s subsurface, which generally implies large computational effort. In order to minimize this cost function we explore the use of Adaptive Gradient Optimization (AGO), a variant of Stochastic Gradient Descent (SGD) methods, combining them with a dynamic simultaneous sources strategy that allow us to reduce the computational cost involved in this process. AGO methods are computationally efficient, have little memory requirements and have the capability of adapting the step-length according to the optimization process’ evolution. Since a precise calibration of the step-length is needed to ensure efficiency, the AGOs are well-suited for this task because they are able to adapt the step-length according to the optimization’s development. In this work, we propose a simple non-linear relationship that allows an adjustment of the step-length with respect to the frequencies used in the multiscale FWI, avoiding the line-search strategy’s high computational burden. Additionally, the application of this new step-length rule into the AGO methods with a dynamic simultaneous sources strategy, allow us to concurrently accelerate and significantly improve the FWI’s numerical performance and results. We compare the performance and final results of seven AGO methods, using two different FWI misfit functionals (based on L1 and L2 norms) applied to estimate the final velocity models of two benchmark acoustic models: the Marmousi and the Canadian overthrust BP velocity models.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3