True-amplitude vector-acoustic imaging: Application of Gaussian beams

Author:

El Yadari Nizare1

Affiliation:

1. Formerly Schlumberger, Gatwick, UK; presently Saudi Aramco, Dhahran, Saudi Arabia..

Abstract

Acoustic Gaussian beam migration is an attractive imaging method because it is flexible with input geometry, efficient, and accurate in imaging multipath arrivals. However, one of the hurdles that this method must overcome in production processing is its extension to use multimeasurement data, as recently allowed by novel acquisition technologies. This is inevitable when the compensation of the ghost effect is best corrected within a true-amplitude imaging process, a necessity for amplitude-variation-with-offset work. For this purpose, I introduced a novel formalism for vector-acoustic imaging, based on Green’s function theory, which can remove the ghost effect and produce amplitudes on reflectors that are proportional to the reflection coefficients. I established a theoretical framework with Gaussian beam representations of Green’s functions, including the weighted beam-stacking approach that reduced the cost of computation. I extended my formulas to use the steep-descent (i.e., stationary phase) approximation. Then, I explained the impact of this approximation on the illumination and the event continuity and sharpness. I also studied the special case of acoustic imaging corresponding to using single-measurement (i.e., pressure) data. I applied the derived formulations to realistic synthetic multisensor data (North Sea) using a research code of Gaussian beam migration. The numerical examples demonstrated that I can improve the illumination of the final images and obtain wide-bandwidth reflectivity maps.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3