Recent advances in time-lapse, laboratory rock physics for the characterization and monitoring of fluid-rock interactions

Author:

Vanorio Tiziana1

Affiliation:

1. Stanford University, Stanford Rock Physics Laboratory, Geophysics Department, Stanford, California, USA..

Abstract

Monitoring thermo-chemo-mechanical processes geophysically — e.g., fluid disposal or storage, thermal and chemical stimulation of reservoirs, or natural fluids simply entering a new system — raises numerous concerns because of the likelihood of fluid-rock chemical interactions and our limited ability to decipher the geophysical signature of coupled processes. One of the missing links is understanding the evolution of seismic properties together with reactive transport because rock properties evolve as a result of chemical reactions and vice versa. Capturing this coupling experimentally is one of the missing elements in the existing literature. This paper describes recent advances in rock-physics experiments to understand the effects of dissolution-induced compaction on acoustic velocity, porosity, and permeability. This paper has a dual aim: understanding the mechanisms underlying permanent modifications to the rock microstructure and providing a richer set of experimental information to inform the formulation of new simulations and rock modeling. Data observation included time-lapse experiments and imaging tracking transport and elastic properties, the rock microstructure, and the pH and chemical composition of the fluid permeating the rock. Results show that the removal of high surface area, mineral phases such as microcrystalline calcite and clay appears to be mostly responsible for dissolution-induced compaction. Nevertheless, it was the original rock microstructure and its response to stress that ultimately defined how solution-transfer and rock compaction feed back upon each other. The change in pore volume to the applied stress, the permeability characterizing the formation, and the reactive transport of phases characterized by a high surface area were strongly coupled during injection, controlling how velocity evolved. In less stiff rocks, rock-fluid interactions led to grain-slip-driven compaction and a consequent decrease in velocity. In tight and stiff rocks, rock-fluid interactions led to minimal compaction, a larger increase in permeability, and crack opening. Nevertheless, the change in velocity of these tight rocks was almost negligible.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3