Feasibility of seismic time-lapse monitoring of CO2 with rock physics parametrized full waveform inversion

Author:

Hu Qi1ORCID,Grana Dario2ORCID,Innanen Kristopher A1

Affiliation:

1. Department of Geoscience , University of Calgary, Calgary, Alberta T2N 1N4, Canada

2. Department of Geology and Geophysics, School of Energy Resources, University of Wyoming , Laramie, WY 82071, USA

Abstract

SUMMARY Carbon capture and storage is an important technology for greenhouse gas mitigation. Monitoring of CO2 storage should, in addition to locating the plume, provide quantitative information on CO2 saturation. We propose a full waveform inversion (FWI) algorithm for the prediction of the spatial distribution of CO2 saturation from time-lapse seismic data. The methodology is based on the application of a rock-physics parametrized FWI scheme that allows for direct updating of reservoir properties. We derive porosity and lithology parameters from baseline data and use them as input to predict CO2 saturation from monitor data. The method is tested on synthetic time-lapse data generated for the Johansen formation model. Practical issues associated with field data applications, such as acquisition limitations, construction of the initial model, noise and uncertainty in the rock physics model, are taken into account in the simulation. The results demonstrate the robustness of our approach for reconstructing baseline and monitor models. We also illustrate the potential of the approach as compared to conventional two-step inversion algorithms, in which an elastic FWI prediction of velocities and density is followed by rock physics inversion.

Funder

SEG Foundation

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3