Feasibility of time-lapse gravity and gravity gradiometry monitoring for steam-assisted gravity drainage reservoirs

Author:

Reitz Anya1,Krahenbuhl Richard1,Li Yaoguo1

Affiliation:

1. Colorado School of Mines, Department of Geophysics, Center for Gravity, Electrical and Magnetic Studies, Golden, Colorado, USA..

Abstract

There is presently an increased need to monitor production efficiency as heavy oil reservoirs become more economically viable. We present a feasibility study of monitoring steam-assisted gravity drainage (SAGD) reservoirs using time-lapse gravimetry and gravity gradiometry. Even though time-lapse seismic has historically shown great success for SAGD monitoring, the gravimetry and gravity gradiometry methods offer a low-cost interseismic alternative that can complement the seismic method, increase the survey frequency, and decrease the cost of monitoring. In addition, both gravity-based methods are directly sensitive to the density changes that occur as a result of the replacement of heavy oil by steam. Advances in technologies have made both methods viable candidates for consideration in time-lapse reservoir monitoring, and we have numerically evaluated their potential application in monitoring SAGD production. The results indicate that SAGD production should produce a strong anomaly for both methods at typical SAGD reservoir depths. However, the level of detail for steam-chamber geometries and separations that can be recovered from the gravimetry and gravity gradiometry data is site dependent. Gravity gradiometry shows improved monitoring ability, such as better recovery of nonuniform steam movement due to reservoir heterogeneity, at shallower production reservoirs. Gravimetry has the ability to detect SAGD steam-chamber growth to greater depths than does gravity gradiometry, although with decreasing resolution of the expanding steam chambers.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3