Monitoring gas production and C O2 injection at the Sleipner field using time-lapse gravimetry

Author:

Alnes Håvard12,Eiken Ola12,Stenvold Torkjell12

Affiliation:

1. StatoilHydro Research Centre, Trondheim, Norway..

2. Formerly Norwegian University of Science and Technology, Department of Petroleum Engineering and Applied Geophysics, Trondheim, Norway; presently EnVision AS, Trondheim, Norway..

Abstract

Thirty seafloor gravity stations have been placed above the carbon dioxide [Formula: see text] injection site and producing gas reservoir at the Sleipner Øst Ty field. Gravity and depth measurements from 2002 and 2005 reveal vertical changes of the permanently deployed benchmarks, probably caused by seafloor erosion and biologic activity (fish). The original gravity data have been reprocessed, resulting in slightly different gravity-change values compared with earlier published results. Observed gravity changes are caused by height variances, gas production and water influx in the Ty Formation, and [Formula: see text] injection in the Utsira Formation. Simultaneous matches to models for these effects have been made. The latest simulation model of the Ty Formation was fitted by permitting a scale factor, and the gravity contribution from the [Formula: see text] plume was determined by using the plume geometry as observed in 4D seismic data and varying the average density. The best-fit vertical gravity gradient is [Formula: see text], and the response from the Ty Formation suggests more water influx than expected in the presurvey simulation model. The best-fit average density of [Formula: see text] is [Formula: see text]. Estimates of the reservoir temperature combined with the equation of state for [Formula: see text] indicate an upper bound on [Formula: see text] density of [Formula: see text]. The gravity data suggest a lower bound of [Formula: see text] at 95% confidence.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3