Multidip tomography formulation for migration velocity analysis

Author:

Dafni Raanan1,Reshef Moshe1

Affiliation:

1. Tel-Aviv University, Department of Geophysical Atmospheric and Planetary Sciences, Tel-Aviv, Israel..

Abstract

We have developed a new approach for migration velocity analysis by ray-based reflection tomography, formulated according to more than a single dip direction. It is suggested to use a summation-free subsurface imaging system in the angle domain for generating multiparameter common image gathers through depth migration. Each gather associated with this system comprised dip-dependent opening-angle images contributed from the prestack data. Independent moveout information, coming from either a specular or nonspecular dip direction, was extracted inside these gathers to allow the entire scattered field to be involved in the velocity model optimization. By obeying the linear tomographic principle, a multidip tomography system was set to include imaging errors from specular and nonspecular directions. The updated velocity model was reconstructed by a least-squares inverse solution of the multidip tomographic equation system. Providing additional moveout from the migration’s dip, other than the specular one, was believed to be essential because the seismic data were misplaced in the image space while applying depth imaging by an erroneous velocity model. It might make the determination of a clear specular orientation, usually from the seismic image itself, misleading or ambiguous. The conversion of depth moveout into traveltime error along nonspecular rays was done according to an analytic mechanism, derived in the angle domain. The proposed analysis of migration errors by a multiple dip-angle orientation is demonstrated via the multidip tomography formulation by 2D synthetic and real data examples. It seems to be more efficient, as accurate and reliable as the conventional analysis, and to be better able to determine the ill-posed conditioning of the tomographic inversion.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3