Three-dimensional modeling of IP effects in time-domain electromagnetic data

Author:

Marchant David1,Haber Eldad1,Oldenburg Douglas W.1

Affiliation:

1. University of British Columbia, Department of Earth, Ocean, and Atmospheric Sciences, Vancouver, British Columbia, Canada..

Abstract

Understanding the effects of induced-polarization (IP) effects on time-domain electromagnetic data requires the ability to simulate common survey techniques when taking chargeability into account. Most existing techniques preform this modeling in the frequency domain prior to transforming their results to the time domain. Even though this technique can allow for chargeable material to be easily incorporated, its application for some problems can be computationally limiting. We developed a new technique for forward modeling the time-domain electromagnetic response of chargeable materials in three dimensions. The frequency dependence of Ohms’ law translates to an ordinary differential equation when considered in the time domain. The system of ordinary-partial differential equations was then discretized using an implicit time-stepping algorithm, that yielded absolute stability. This approach allowed us to operate directly in the time domain and avoid frequency to time-domain transformations. Although this approach can be applied directly to materials exhibiting Debye dispersions, other Cole-Cole dispersions resulted in fractional derivatives in time. To overcome this difficulty, Padé approximations were used to represent the frequency dependence as a rational series of integer order terms. The resulting method was then simplified to generate a reduced time-domain model that can be used to forward model the IP decay curves in the absence of any electromagnetic coupling. We found numerical examples in which the method produced accurate results. The potential application of the method was demonstrated by modeling the full time-domain electromagnetic response of a gradient array IP survey, and the occurrence of negative transients in airborne time-domain electromagnetic data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3