A numerical study of 3D elastic time-lapse full-waveform inversion using multicomponent seismic data

Author:

Raknes Espen Birger1,Arntsen Børge1

Affiliation:

1. Norwegian University of Science and Technology, Department of Petroleum Engineering and Applied Geophysics, Trondheim, Norway..

Abstract

A common assumption in wave-propagation problems is that the subsurface is approximately an acoustic medium. Under this assumption, important wave phenomena such as S-waves are not included. Due to the increase in computational power in recent years, the acoustic assumption may be left behind and replaced by the more physically correct elastic assumption. Time-lapse seismic data contain information about changes in the subsurface due to the production of hydrocarbons or injection of [Formula: see text]. Full-waveform inversion (FWI) is an inverse method that can be used to quantify these time-lapse changes in the subsurface. Using a 3D isotropic elastic implementation of the FWI method, we studied two strategies for performing time-lapse FWI. We used synthetic ocean-bottom multicomponent seismic time-lapse data to estimate changes in the P- and S-wave velocity models. A sensitivity analysis in which the sensitivities with respect to the magnitude and physical size of the time-lapse anomalies and the noise level in the data was performed. The strategy focusing on explaining the data differences between the baseline and monitor data sets provided fewer artifacts in the inverted elastic models than the strategy that tried to explain the full monitor data set, and it was therefore preferable. The data-difference strategy depends on good repeatability in the time-lapse data sets and sufficient convergence of the inversion of the baseline data set.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3