Data-assimilated time-lapse visco-acoustic full-waveform inversion: Theory and application for injected CO2 plume monitoring

Author:

Huang Chao1ORCID,Zhu Tieyuan2ORCID,Xing Guangchi3ORCID

Affiliation:

1. Tongji University, State Key Laboratory of Marine Geology, Shanghai, China and The Pennsylvania State University, Department of Geosciences, University Park, Pennsylvania, USA. (corresponding author)

2. The Pennsylvania State University, Department of Geosciences, University Park, Pennsylvania, USA and The Pennsylvania State University, Energy Institute, Earth and Mineral Sciences, University Park, Pennsylvania, USA.

3. The Pennsylvania State University, Department of Geosciences, University Park, Pennsylvania, USA.

Abstract

Continuous seismic monitoring for quantifying CO2 plume migration and detection of any potential leakages in the subsurface is essential for the security of long-term anthropogenic carbon dioxide geologic storage. Traditional time-lapse full-waveform inversion (TLFWI) methods aim to map the CO2 distribution by estimating seismic velocity changes, but recent studies find that CO2-induced attenuation is an important complement to seismic velocity for tracking the CO2 plumes and even quantifying the CO2 saturation. We have developed a novel data-assimilated TLFWI method to construct high-resolution time-lapse velocity and attenuation changes from dense time-lapse monitoring data. This method consists of two theoretical developments: visco-acoustic full-waveform inversion (QFWI) and multiparameter hierarchical matrix-powered extended Kalman filter (mHiEKF). The method is capable of (1) posing temporal constraints to retrieve time-lapse information from dense monitoring data by using mHiEKF, (2) accurately recovering high-spatial-resolution velocity and attenuation perturbations using first-order equation system-based QFWI, and (3) providing the model uncertainty by estimating their model standard deviation. With numerical examples, we first find the effectiveness of the new QFWI on estimating accurate velocity and attenuation models simultaneously. Then, a CO2 leakage case and a realistic Frio-II CO2 monitoring case are presented to find the advantages and applicability of our data-assimilated QFWI method for estimating time-lapse changes using dense time-lapse monitoring surveys. By assimilating time-lapse seismic monitoring data over time, our data-assimilated QFWI method can improve the resolution of velocity and attenuation changes and decrease their model uncertainties.

Funder

National Natural Science Foundation of China

the Self-determined Project of the State Key Laboratory of Marine Geology, Tongji University

the U.S. Department of Energy’s National Energy Technology Laboratory

the Fundamental Research Funds for the Central Universities

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3