Simply denoise: Wavefield reconstruction via jittered undersampling

Author:

Hennenfent Gilles1,Herrmann Felix J.1

Affiliation:

1. University of British Columbia, Department of Earth and Ocean Sciences, Vancouver, Canada. .

Abstract

We present a new, discrete undersampling scheme designed to favor wavefield reconstruction by sparsity-promoting inversion with transform elements localized in the Fourier domain. The work is motivated by empirical observations in the seismic community, corroborated by results from compressive sampling, that indicate favorable (wavefield) reconstructions from random rather than regular undersampling. Indeed, random undersampling renders coherent aliases into harmless incoherent random noise, effectively turning the interpolation problem into a much simpler denoising problem. A practical requirement of wavefield reconstruction with localized sparsifying transforms is the control on the maximum gap size. Unfortunately, random undersampling does not provide such a control. Thus, we introduce a sampling scheme, termed jittered undersampling, that shares the benefits of random sampling and controls the maximum gap size. The contribution of jittered sub-Nyquist sampling is key in formu-lating a versatile wavefield sparsity-promoting recovery scheme that follows the principles of compressive sampling. After the behavior of the jittered-undersampling scheme in the Fourier domain is analyzed, its performance is studied for curvelet recovery by sparsity-promoting inversion (CRSI). The findings on synthetic and real seismic data indicate an improvement of several decibels over recovery from regularly undersampled data for the same amount of data collected.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 255 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generative interpolation via a diffusion probabilistic model;GEOPHYSICS;2024-01-01

2. Design of Undersampled Seismic Acquisition Geometries via End-to-End Optimization;IEEE Transactions on Geoscience and Remote Sensing;2024

3. Nonuniform dispersed source arrays for broadband seismic acquisition;Third International Meeting for Applied Geoscience & Energy Expanded Abstracts;2023-12-14

4. 3D seismic survey design by maximizing the spectral gap;Third International Meeting for Applied Geoscience & Energy Expanded Abstracts;2023-12-14

5. Achieving Robust Compressive Sensing Seismic Acquisition with a Two-Step Sampling Approach;Sensors;2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3