Affiliation:
1. Chesapeake Energy Corporation, Oklahoma City, Oklahoma, USA.(corresponding author).
Abstract
Multiclient 3D seismic data were acquired in 2015 in eastern Ohio for reservoir characterization of the Utica Shale consisting of the Utica and Point Pleasant Formations. I attained accurate, high-fidelity acoustic impedance, shear impedance, density, and [Formula: see text], from elastic inversion. These accurate inversion results allow consistent calculation of reservoir and geomechanical properties of the Utica Shale. I found density critically important affecting the accuracy of other reservoir and geomechanical properties. More than a dozen properties in geologic, geomechanical, and reservoir categories were acquired from logs, cores, and seismic inversion, for this integrated reservoir characterization study. These properties include buried depth, formation thickness, mineralogy, density, Young’s modulus, Poisson’s ratio (PR), brittleness, total organic carbon (TOC), porosity, water saturation, permeability, clay content, and natural fractures. A ternary diagram of core samples from 18 wells demonstrates that the Point Pleasant is dominant with calcite, whereas the Utica mainly contains clay. Inverted density clearly divides Point Pleasant as low density from the overlying Utica. Calculated reservoir properties undoubtedly delineate the traditional Utica Shale as two distinctive formations. I calculated that the Utica Formation contains 1%–2% TOC, 3.5%–4.8% porosity, 10%–24% water saturation, and 40%–58% clay content, whereas Point Pleasant contains 3%–4.5% TOC, 5%–9% porosity, 2%–10% water saturation, and 15%–35% clay content. The PR and brittleness clearly separate Point Pleasant from the overlying Utica, with a lower PR and a higher brittleness index in Point Pleasant than in Utica. The higher brittleness in Point Pleasant makes it easier to frac, leading to enhanced permeability. Both formations exhibit spatial variations of reservoir and geomechanical properties. Nevertheless, the underlying Point Pleasant is obviously better than the Utica Shale with favorable reservoir and geomechanical properties for optimal development and production, although Utica is thicker and shallower. The central and southeastern portions of Point Pleasant have the sweetest reservoirs.
Publisher
Society of Exploration Geophysicists
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献