Use of multiattribute transforms to predict log properties from seismic data

Author:

Hampson Daniel P.1,Schuelke James S.2,Quirein John A.2

Affiliation:

1. Hampson‐Russell Software Services Ltd., 510-715 Fifth Avenue SW, Calgary, Alberta T2P 2X6, Canada.

2. Mobil Technology Company, Dallas, Texas. Emails:

Abstract

We describe a new method for predicting well‐log properties from seismic data. The analysis data consist of a series of target logs from wells which tie a 3-D seismic volume. The target logs theoretically may be of any type; however, the greatest success to date has been in predicting porosity logs. From the 3-D seismic volume a series of sample‐based attributes is calculated. The objective is to derive a multiattribute transform, which is a linear or nonlinear transform between a subset of the attributes and the target log values. The selected subset is determined by a process of forward stepwise regression, which derives increasingly larger subsets of attributes. An extension of conventional crossplotting involves the use of a convolutional operator to resolve frequency differences between the target logs and the seismic data. In the linear mode, the transform consists of a series of weights derived by least‐squares minimization. In the nonlinear mode, a neural network is trained, using the selected attributes as inputs. Two types of neural networks have been evaluated: the multilayer feedforward network (MLFN) and the probabilistic neural network (PNN). Because of its mathematical simplicity, the PNN appears to be the network of choice. To estimate the reliability of the derived multiattribute transform, crossvalidation is used. In this process, each well is systematically removed from the training set, and the transform is rederived from the remaining wells. The prediction error for the hidden well is then calculated. The validation error, which is the average error for all hidden wells, is used as a measure of the likely prediction error when the transform is applied to the seismic volume. The method is applied to two real data sets. In each case, we see a continuous improvement in predictive power as we progress from single‐attribute regression to linear multiattribute prediction to neural network prediction. This improvement is evident not only on the training data but, more importantly, on the validation data. In addition, the neural network shows a significant improvement in resolution over that from linear regression.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3