The fields from a finite electrical dipole—A new computational approach

Author:

Sørensen Kurt I.1,Christensen Niels B.1

Affiliation:

1. Laboratory of Geophysics, Department of Earth Sciences, University of Aarhus, Finlandsgade 8, DK-8200 Aarhus N, Denmark

Abstract

Controlled‐source, frequency‐domain, and time‐domain electromagnetic methods require accurate, fast, and reliable methods of computing the electric and magnetic fields from the source configurations used. Except for small magnetic dipole sources, all electric and magnetic sources are composed of lengths of straight wire, which may be grounded. If the source‐receiver separation is large enough, the composite electrical dipoles may be considered to be infinitely small, and in a 1-D earth model the fields are expressed as Hankel transforms of an input function, which depends only on the model parameters. The Hankel transforms can be evaluated using the digital filter theory of fast Hankel transforms. However, the approximation of the infinitely small dipole is not always valid, and fields from a finite electrical dipole must be calculated. Traditionally, this is done by numerical integration of the fields from an infinitesimal dipole, thus increasing computation time considerably. The fields from the finite electrical dipole are expressed as Hankel transforms and as integrals of Hankel transforms. The theory of fast Hankel transforms is extended to include integrals of Hankel transforms, and a method is devised for calculating the filter coefficients. Unlike the fast Hankel transform, the computation involved in the integrated Hankel transforms is not a true convolution, and so a set of filter coefficients must be calculated for each source‐receiver configuration. Furthermore, the method is extended to include the calculation of potential differences where one more integration is involved, which is what is actually measured in the field. The computation of filter coefficients is very fast, and for standard configurations, the coefficients need be computed only once. The method is as fast, accurate, and reliable as the fast Hankel transforms method, and is up to an order of magnitude faster than the usual numerical integration.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3