A tool for designing digital filters for the Hankel and Fourier transforms in potential, diffusive, and wavefield modeling

Author:

Werthmüller Dieter1ORCID,Key Kerry2ORCID,Slob Evert C.3ORCID

Affiliation:

1. Formerly Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Col. San Bartolo Atepehuacan C.P. 07730, Ciudad de México, México; presently TU Delft, Building 23, Stevinweg 1/PO-box 5048, CN Delft 2628, The Netherlands..

2. Columbia University, Lamont-Doherty Earth Observatory, 61 Route 9W, Palisades, New York 10964-8000, USA..

3. TU Delft, Building 23, Stevinweg 1/PO-box 5048, CN Delft 2628, The Netherlands..

Abstract

The open-source code fdesign makes it possible to design digital linear filters for the Hankel and Fourier transforms used in potential, diffusive, and wavefield modeling. Digital filters can be derived for any electromagnetic (EM) method, such as methods in the diffusive limits (direct current, controlled-source EM [CSEM]) as well as methods using higher frequency content (ground-penetrating radar [GPR], acoustic and elastic wavefields). The direct matrix inversion method is used for the derivation of the filter values, and a brute-force minimization search is carried out over the defined spacing and shifting values of the filter basis. Included or user-provided theoretical transform pairs are used for the inversion. Alternatively, one can provide layered subsurface models that will be computed with a precise quadrature method using the EM modeler empymod to generate numerical transform pairs. The comparison of the presented 201 pt filter with previously presented filters indicates that it performs better for some standard CSEM cases. The derivation of a longer 2001 pt filter for a GPR example with a 250 MHz center frequency proves that the filter method works not only for diffusive EM fields but also for wave phenomena. The presented algorithm provides a tool to create problem specific digital filters. Such purpose-built filters can be made shorter and can speed up consecutive potential, diffusive, and wavefield inversions.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3