Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering

Author:

Anderson Walter L.1

Affiliation:

1. U. S. Geological Survey, M.S. 964, Box 25046, Denver Federal Center, Denver, CO 80225

Abstract

A linear digital filtering algorithm is presented for rapid and accurate numerical evaluation of Hankel transform integrals of orders 0 and 1 containing related complex kernel functions. The kernel for Hankel transforms is defined as the non‐Bessel function factor of the integrand. Related transforms are defined as transforms, of either order 0 or 1, whose kernel functions are related to one another by simple algebraic relationships. Previously saved kernel evaluations are used in the algorithm to obtain rapidly either order transform following an initial convolution operation. Each order filter is designed with identical abscissas over a large range so that an adaptive convolution procedure can be applied to a large class of kernels. Different order Hankel transforms with related kernels are often found in electromagnetic (EM) applications. Because of the general nature of this algorithm, the need to design new filters should not be necessary for most applications. Accuracy of the filters is comparable to that of single‐precision numerical quadrature methods, provided well‐behaved kernels and moderate values of the transform argument are used. Filtering errors of less than 0.005 percent are demonstrated numerically using known analytical Hankel transform pairs. The digital filter accuracy is also illustrated by comparison with other published filters for computing the apparent resistivity for a Schlumberger array over a horizontally layered earth model. The algorithm is written in Fortran IV and is listed in the Appendix along with a test driver program. Detailed comments are included to define sufficiently all calling parameter requirements.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 317 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3