Acquisition and processing of wide‐aperture ground‐penetrating radar data

Author:

Fisher Elizabeth1,McMechan George A.1,Annan A. Peter2

Affiliation:

1. The University of Texas at Dallas, Center for Lithospheric Studies, P.O. Box 830688, Richardson, Texas 75083-0688

2. Sensors and Software, Inc., 5566 Tomken Road, Mississauga, Ontario, Canada L4W 1P4

Abstract

A 40-channel wide‐aperture ground penetrating radar (GPR) data set was recorded in a complicated fluvial/aeolian environment in eastern Canada. The data were collected in the multichannel format usually associated with seismic reflection surveys and were input directly into a standard seismic processing sequence (filtering, static corrections, common‐midpoint gathering, velocity analysis, normal‐ and dip‐moveout corrections, stacking and depth migration). The results show significant improvements, over single‐channel recordings, in noise reduction and depth of penetration (by stacking), and in spatial positioning and reduction of diffraction artifacts (by migration). These characteristics increase the potential for reliable interpretation of structural and stratigraphic details. Thus, without having to develop any new software, GPR data processing technology is brought to the same level of capability, flexibility, and accessibility that is current in seismic exploration.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3