Least Squares Reverse Time Migration of Ground Penetrating Radar Data Based on Modified Total Variation

Author:

Dai Qianwei12,Wang Shaoqing12,Lei Yi3ORCID

Affiliation:

1. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Changsha 410083, China

2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

3. School of Civil Engineering, Central South University, Changsha 410075, China

Abstract

As a fundamental part of ground penetrating radar (GPR) data processing, reverse time migration (RTM) can correctly position reflection waves and focusing diffraction waves on the proper spatial position. Least-squares reverse-time migration (LSRTM) is widely used in the seismic field for its ability to suppress artifacts and generate high-resolution images in comparison to conventional RTM. However, in the particular case of GPR detection methods, LSRTM is extremely susceptible to aliasing artifacts caused by under-sampling. In pursuit of enhanced precision in underground structure characterization, this paper presents the development of a new LSRTM based on modified total variation (MTV) regularization to improve imaging resolution. Initially, the objective function of LSRTM is derived by combining the Born approximation in 2-D transversal magnetic mode. Next, the adjoint equations and their gradients are solved using the Lagrange multiplier method. The objective function is then constrained by MTV regularization to ensure the precision and convergence of the LSRTM, which delivers a refined edge with reconstruction details. In the numerical experiments, in comparison to the conventional LSRTM method, the LSRTM-MTV algorithm demonstrated a 30.4% increase in computational speed and a 21.1% reduction in mean squared error (MSE). The outperformance of the proposed method is verified in detail through the image resolution and amplitude preservation in the test of synthetic data and laboratory data. Future research efforts will center on applying the proposed method to models featuring dispersive or anisotropic media that closely mimic real-world conditions and extending the application to various imaging techniques involving objective function minimization.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Postdoctoral Science Foundation of Central South University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3