Borehole electrical resistivity modeling using neural networks

Author:

Zhang Lin1,Poulton Mary M.2,Wang Tsili3

Affiliation:

1. Formerly University of Arizona, Department of Mining and Geological Engineering, Tucson, Arizona; presently ChevronTexaco Exploration and Production Technology Company, 4800 Furnace Place, Bellaire, Texas 77401.

2. University of Arizona, Department of Mining and Geological Engineering, Tucson, Arizona 85721.

3. Baker Atlas, 2001 Rankin Road, Houston, Texas 77073‐5100.

Abstract

A neural network approach has been applied to model downhole resistivity tools, i.e., to generate a synthetic tool response for a given earth resistivity model. The microlaterolog (MLL), shallow dual laterolog (DLLs), and deep dual laterolog (DLLd) tools are modeled using neural networks to demonstrate this approach. Efforts have been made to select various neural network parameters, including the type of neural network, the length of input data for training, the number of hidden nodes, and the number of training samples. A modular neural network (MNN) has been selected because it can facilitate the training and prediction of tool responses in formations with large resistivity variations. The input data for training are taken to be the model formation resistivity values sampled over a depth window. The window length is chosen based on the tool lengths. Three different window lengths are used for experiments: 6.1, 9.1, and 30.5 m. We found the longer window lengths generally have higher modeling accuracy for the three different types of logging tools. The number of hidden nodes needed to yield satisfactory training and prediction data varies from 8 to 25, depending on the type of tool and the window length. Up to 30 000 training samples have been collected to train the MNN. Our modeling examples show that the trained MNN can achieve about 90% accuracy for the MLL log response and about 83% accuracy for the DLLs and DLLd responses. The modeling errors can be described roughly with a Gaussian distribution.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3