A global measure for depth of investigation

Author:

Vest Christiansen Anders1,Auken Esben2

Affiliation:

1. Geological Survey of Denmark and Greenland (GEUS), Hoejbjerg, Denmark and Aarhus University, Institute for Geoscience, HydroGeophysics Group, Department of Geoscience, Aarhus, Denmark..

2. Aarhus University, Institute for Geoscience, HydroGeophysics Group, Department of Geoscience, Aarhus, Denmark..

Abstract

We tested a new robust concept for the calculation of depth of investigation (DOI) that is valid for any 1D electromagnetic (EM) geophysical model. A good estimate of DOI is crucial when building geologic and hydrological models from EM data sets because the validity of the models varies strongly with data noise and the resistivity of the layers themselves. For diffusive methods, such as ground-based and airborne electromagnetic, it is not possible to define an unambiguous depth below which there is no information on the resistivity structure and a measure of DOI is therefore to what depth the model can be considered reliable. The method we presented is based on the actual model output from the inversion process and we used the actual system response, contrary to assuming, e.g., planar waves over a homogeneous half-space, the widely used skin depth calculation. Equally important, the data noise and the number of data points are integrated into the calculation. Our methodology is based on a recalculated sensitivity (Jacobian) matrix of the final model and thus it can be used on any model type for which a sensitivity matrix can be calculated. Unlike other sensitivity matrix methods, we defined a global and absolute threshold value contrary to defining a relative (such as 5%), sensitivity limit. The threshold value will apply to all 1D inverted data and will thus produce comparable numbers of DOI.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3