Affiliation:
1. Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313002, China
2. School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract
The probing depth of the transient electromagnetic method (TEM) refers to the depth range at which the underground conductivity changes can be effectively detected. It typically ranges from tens of meters to several kilometers and is influenced by factors such as instrument parameters and the conductivity of the subsurface structure. Rapid and accurate probing depth is useful for the selection of appropriate inversion parameters and improving survey accuracy. However, mainstream methods suffer from issues such as low computational precision, large uncertainties, or high computational requirements, making them unsuitable for processing massive airborne electromagnetic data. In this study, we propose a prediction model based on deep learning that can directly compute the probing depth from the TEM responses, and its effectiveness and accuracy are validated through synthetic models and field measurements. We compared the performance of classic deep learning models, including CNN, RESNET, and RNN, and found that RNN performed the best overall on both synthetic and field data. Furthermore, we apply this algorithm to deep learning-based ATEM inversion by constraining the one-dimensional resistivity model depths in the training set, to reduce the non-uniqueness of the inversion, accelerate the convergence, and improve its prediction accuracy.
Funder
Huzhou Public Welfare Research Project
Basic Scientific Research Program from Yangtze Delta Region Institute
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献