Deep-learning electromagnetic monitoring coupled to fluid flow simulators

Author:

Colombo Daniele1ORCID,Li Weichang2ORCID,Sandoval-Curiel Ernesto1,McNeice Gary W.1

Affiliation:

1. EXPEC Advanced Research Center, Geophysics Technology, Saudi Aramco, Dhahran, Saudi Arabia..

2. Aramco Research Center-Houston, Aramco Services Company, Houston, Texas, USA..

Abstract

Reservoir characterization and monitoring represent some of the most ambitious goals for geophysical methods. Several challenges are involved, including sensitivity to the parameter changes and resolution of the obtained results. Electromagnetic (EM) methods are attractive for reservoir applications due to the high sensitivity of the resistivity parameter to oil/water saturations. Crosswell EM and surface-to-borehole EM provide opportunities for reservoir monitoring. The EM inverse problem, however, is highly nonconvex and ill-posed so as to necessitate significant preconditioning in the form of a priori information and regularization that impact resolution. We explore the use of machine-learning (ML) techniques in the form of deep-learning neural networks for implementing EM-based reservoir monitoring coupled with a dynamic fluid flow simulator. A crosswell acquisition setup is modeled in the framework of a realistic water-alternating-gas reservoir simulation scenario for enhanced oil recovery. Several reservoir saturation instances are generated and converted into resistivity, and corresponding crosswell EM data are generated using an electric source and a multicomponent (electric-magnetic) receiver assemblage. The U-Net deep-learning network is modified for the purpose of training and validation in which saturation models and the corresponding EM data are used. We also test the sensitivity of the deep-learning inversion to multiple EM components, noise in the data, generalization problems, and 3D reconstruction ability in which we use 3D convolutional neural network layers. In all cases, ML inversion proves to be robust with good resilience to increased noise levels. Prediction results indicate excellent reconstruction capabilities with resolution comparable to the reservoir models used by the simulator. Our results suggest that ML inversion through deep learning can become an efficient approach to data-driven and physics-constrained reservoir monitoring in which the sensitivity of EM-based techniques to fluid saturations can be fully exploited without compromising the resolution and accuracy of the results.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3