Self-Supervised, Active Learning Seismic Full Waveform Inversion

Author:

Colombo Daniele1,Turkoglu Ersan1,Sandoval-Curiel Ernesto1,Alyousuf Taqi1

Affiliation:

1. Saudi Aramco, EXPEC Advanced Research Center, Dhahran, Saudi Arabia..

Abstract

We develop a recursive, self-supervised machine learning inversion for fast and accurate full waveform inversion of land seismic data. Machine learning generalization is enhanced by using virtual super gathers of field data for training. These are obtained from midpoint-offset sorting and stacking after applying surface-consistent corrections from the decomposition of the transmitted wavefield. The procedure implements reinforcement learning concepts by adopting an inversion agent to interact with the environment and explore the model space under a data misfit optimization policy. The generated parameter distributions and related forward responses are used as new training samples for supervised learning. The active learning paradigm is further embedded in the procedure where queries on data diversity and uncertainty are used to generate fully informative reduced sets for training. The procedure is recursive. At each cycle, the physics-based inversion is coupled to the machine learning predictions via penalty terms that promote a long-term data misfit reduction. The resulting self-supervised, active learning, physics-driven deep learning inversion generalizes well with field data. The method is applied to perform full waveform inversion of a complex land seismic dataset characterized by transcurrent faulting and related structures. High signal-to-noise virtual super gathers are inverted with a 1.5D Laplace-Fourier full waveform inversion scheme. The active learning inversion procedure utilizes a small fraction of data for training while achieving sharper velocity reconstructions and a lower data misfit when compared to previous results. Active learning full waveform inversion is highly generalizable and effective for land seismic velocity model building and for other inversion scenarios.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3