Suppressing migration image artifacts using a support vector machine method

Author:

Chen Yuqing1ORCID,Huang Yunsong1ORCID,Huang Lianjie1ORCID

Affiliation:

1. Los Alamos National Laboratory, Geophysics Group, MS D452, Los Alamos, New Mexico 87545, USA.(corresponding author); .

Abstract

Reverse time migration (RTM) can produce high-quality images of complex subsurface structures when using seismic data acquired by a reasonably dense data acquisition geometry. However, RTM produces significant image artifacts when using data from a sparse data acquisition geometry because of incomplete cancellation of migration “smiles.” These artifacts obscure migration images of actual geology, leading to possible misidentification of important geologic features of interest. A specularity filter based on the semblance equation is commonly used in the dip-angle angle-domain common image gather (ADCIG) to preserve signals while suppressing image artifacts. In dip-angle ADCIG, the signals are assumed to have higher semblance scores because they are horizontally more coherent than the artifacts. However, this assumption fails when the image artifacts are severe. We have developed a new approach to suppressing migration image artifacts using a support vector machine (SVM) method. We first develop multiple criteria to distinguish between the signals and artifacts in the dip-angle ADCIG, rather than using only the semblance criterion. We then calculate the weights using a supervised SVM method. The weights approach one for valid signal points, and approach zero for artifact points. Finally, we apply the weights to the dip-angle ADCIG to preserve the effective signals and suppress the image artifacts. We verify the effectiveness of our method, denoted as SVM filtering, using numerical tests on synthetic and field data to produce migration images with improved signal-to-noise ratios and reduced aliasing artifacts.

Funder

U.S Department of Energy

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3