Automated arrival-time picking using a pixel-level network

Author:

Ma Yuanyuan1ORCID,Cao Siyuan1ORCID,Rector James W.2,Zhang Zhishuai3

Affiliation:

1. China University of Petroleum Beijing, State Key Laboratory of Petroleum Resources and Prospecting, Beijing 102249, China.(corresponding author).

2. University of California, Department of Civil and Environmental Engineering, Berkeley, California 94720, USA..

3. Stanford University, Department of Geophysics, Stanford, California 94305, USA..

Abstract

Arrival-time picking is an essential step in seismic processing and imaging. The explosion of seismic data volume requires automated arrival-time picking in a faster and more reliable way than existing methods. We have treated arrival-time picking as a binary image segmentation problem and used an improved pixel-wise convolutional network to pick arrival times automatically. Incorporating continuous spatial information in training enables us to preserve the arrival-time correlation between nearby traces, thus helping to reduce the risk of picking outliers that are common in a traditional trace-by-trace picking method. To train the network, we first convert seismic traces into gray-scale images. Image pixels before manually picked arrival times are labeled with zeros, and those after are tagged with ones. After training and validation, the network automatically learns representative features and generates a probability map to predict the arrival time. We apply the network to a field microseismic data set that was not used for training or validation to test the performance of the method. Then, we analyze the effects of training data volume and signal-to-noise ratio on our autopicking method. We also find the difference between 1D and 2D training data with borehole seismic data. Microseismic and borehole seismic data indicate the proposed network can improve efficiency and accuracy over traditional automated picking methods.

Funder

National Key Research and Development Program of China

National Nature Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference26 articles.

1. Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, 2015, Tensor-Flow: Large-scale machine learning on heterogeneous systems, ArXiv preprint arXiv:1603.04467.

2. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

3. Detecting microseismic events in downhole distributed acoustic sensing data using convolutional neural networks

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3