A fine‐tuning workflow for automatic first‐break picking with deep learning

Author:

Mardan Amir12ORCID,Blouin Martin1,Fabien‐Ouellet Gabriel2,Giroux Bernard3,Vergniault Christophe4,Gendreau Jeremy2

Affiliation:

1. Geostack Québec Quebec Canada

2. Polytechnique Montréal Montréal Quebec Canada

3. INRS‐ETE Québec City Quebec Canada

4. Électricité de France Paris France

Abstract

AbstractFirst‐break picking is an essential step in seismic data processing. For reliable results, first arrivals should be picked by an expert. This is a time‐consuming procedure and subjective to a certain degree, leading to different results for different operators. In this study, we have used a U‐Net architecture with residual blocks to perform automatic first‐break picking based on deep learning. Focusing on the effects of weight initialization on first‐break picking, we conduct this research by using the weights of a pre‐trained network that is used for object detection on the ImageNet dataset. The efficiency of the proposed method is tested on two real datasets. For both datasets, we pick manually the first breaks for less than 10 of the seismic shots. The pre‐trained network is fine‐tuned on the picked shots, and the rest of the shots are automatically picked by the neural network. It is shown that this strategy allows to reduce the size of the training set, requiring fine‐tuning with only a few picked shots per survey. Using random weights and more training epochs can lead to a lower training loss, but such a strategy leads to overfitting as the test error is higher than the one of the pre‐trained network. We also assess the possibility of using a general dataset by training a network with data from three different projects that are acquired with different equipment and at different locations. This study shows that if the general dataset is created carefully it can lead to more accurate first‐break picking; otherwise, the general dataset can decrease the accuracy. Focusing on near‐surface geophysics, we perform traveltime tomography and compare the inverted velocity models based on different first‐break picking methodologies. The results of the inversion show that the first breaks obtained by the pre‐trained network lead to a velocity model that is closer to the one obtained from the inversion of expert‐picked first breaks.

Funder

Mitacs

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3