Ground-penetrating radar data diffraction focusing without a velocity model

Author:

Economou Nikos1ORCID,Vafidis Antonis1,Bano Maksim2ORCID,Hamdan Hamdan3ORCID,Ortega-Ramirez Jose4

Affiliation:

1. Technical University of Crete, School of Mineral Resources Engineering, Applied Geophysics Lab, Chania, Greece.(corresponding author); .

2. University of Strasbourg, EOST/Institut de Physique du Globe (UMR-7516), Strasbourg, France..

3. University of Sharjah, Petroleum Geosciences and Remote Sensing Program, Department of Applied Physics and Astronomy, United Arab Emirates..

4. Instituto Nacional de Antropologia e Historia, Laboratorio de Geofísica, Mexico City, Mexico..

Abstract

Ground-penetrating Radar (GPR) sections commonly suffer from strong scattered energy and weak reflectors with distorted lateral continuity. This is mainly due to the gradual variation of moisture with depth, dense lateral sampling of common-offset GPR traces (which are considered as zero-offset data), along with the small wavelength of the electromagnetic waves that is comparable to the size of the shallow subsurface dielectric heterogeneities. Focusing of the diffractions requires efficient migration that, in the presence of highly heterogeneous subsurface formations, can be improved by a detailed migration velocity model. Such a velocity model is difficult to develop because the common-offset antenna array is mostly used for its reduced time and cost in the data acquisition and processing stages. In such cases, migration processes are based on limited information from velocity analysis of clear diffractions, cores, or other ground truth knowledge, often leading to insufficient imaging. We have developed a methodology to obtain GPR sections with focused diffractions that is based on multipath summation, using weighted stacking (summation) of constant-velocity migrated sections over a predefined velocity range. The success of this method depends on the assignment of an appropriate weight, for each constant-velocity migrated section to contribute to the final stack, and the optimal width of the velocity range used. Additionally, we develop a postmultipath summation processing step, which consists of time-varying spectral whitening, to deal with the decrease of the dominant frequency due to attenuation effects and the additional degraded resolution expected by the constant migration summed images. This imaging strategy leads to GPR sections with sufficiently focused diffractions, enhancing the lateral and the temporal resolution, without the need to explicitly build a migration velocity model.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3