Estimation of the subsurface EM velocity distribution from diffraction hyperbolas by means of a novel automated picking procedure: Theory and application to glaciological GPR data sets

Author:

Dossi Matteo1,Forte Emanuele2,Cosciotti Barbara1,Lauro Sebastian Emanuel1,Mattei Elisabetta1,Pettinelli Elena1,Pipan Michele2

Affiliation:

1. Roma Tre University, Department of Mathematics and Physics, Rome, Italy..

2. University of Trieste, Department of Mathematics and Geosciences, Trieste, Italy..

Abstract

We developed an auto-picking algorithm that is designed to automatically detect subsurface diffractors within GPR data sets; to accurately track the hyperbolic diffractions originating from the identified scatterers; and to recover the subsurface EM velocity distribution, among other possible analyses. The proposed procedure presents several advantages with respect to other commonly applied diffraction tracking techniques, since it can be applied with minimal signal pre-processing, thus making it more versatile and adaptable to local conditions; it requires only limited input from the interpreter, in the form of a few thresholds for the tracking parameters, thus making the results more objective; and it does not involve pre-training, as opposed to machine learning algorithms, thus removing the need to gather a large and comprehensive image database of all possible subsurface situations, which would not be necessarily limited to just examples of diffractions. The presented algorithm starts by identifying those signals that are likely to belong to diffraction apexes, which are then used as initial seeds by the auto-tracking process. The horizontal search window used during the auto-tracking process is locally adapted through a rough preliminary estimate of the size of each diffraction. In addition, multiple seeds within the same apex can produce several acceptable hyperbolas tracking the same diffraction phase. The algorithm thus selects the best-fitting ones by assessing several signal attributes, while also removing both redundant hyperbolas and the expected false positives. The algorithm was applied to two glaciological GPR profiles, and it was able to accurately track the vast majority of the recorded diffractions, with very few false positives and negatives. This produced a statistically sound EM velocity distribution, which was used to assess the state of the surveyed alpine glacier.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3