Self-constrained inversion of potential fields through a 3D depth weighting

Author:

Vitale Andrea1ORCID,Fedi Maurizio1ORCID

Affiliation:

1. Università degli studi di Napoli Federico II, Dipartimento di Scienze della Terra dell’Ambiente e delle Risorse, Via Cinthia, 21, Napoli 80126, Italy.(corresponding author); .

Abstract

A new method for inversion of potential fields is developed using a depth-weighting function specifically designed for fields related to complex source distributions. Such a weighting function is determined from an analysis of the field that precedes the inversion itself. The algorithm is self-consistent, meaning that the weighting used in the inversion is directly deduced from the scaling properties of the field. Hence, the algorithm is based on two steps: (1) estimation of the locally homogeneous degree of the field in a 3D domain of the harmonic region and (2) inversion of the data using a specific weighting function with a 3D variable exponent. A multiscale data set is first formed by upward continuation of the original data. Local homogeneity and a multihomogeneous model are then assumed, and a system built on the scaling function is solved at each point of the multiscale data set, yielding a multiscale set of local-homogeneity degrees of the field. Then, the estimated homogeneity degree is associated to the model weighting function in the source volume. Tests on synthetic data show that the generalization of the depth weighting to a 3D function and the proposed two-step algorithm has great potential to improve the quality of the solution. The gravity field of a polyhedron is inverted yielding a realistic reconstruction of the whole body, including the bottom surface. The inversion of the aeromagnetic real data set, from the Mt. Vulture area, also yields a good and geologically consistent reconstruction of the complex source distribution.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3