Stability analysis and improvement of structural index estimation in Euler deconvolution

Author:

Barbosa Valéria C. F.1,Silva João B. C.1,Medeiros Walter E.2

Affiliation:

1. Dep. Geofísica, CG, Federal University of Pará. Emails:

2. Dep. Física/CCET, Federal University of Rio Grande do Norte, Caixa Postal 1641, 59.072-970 Natal, RN, Brazil.

Abstract

Euler deconvolution has been widely used in automatic aeromagnetic interpretations because it requires no prior knowledge of the source magnetization direction and assumes no particular interpretation model, provided the structural index defining the anomaly falloff rate related to the nature of the magnetic source, is determined in advance. Estimating the correct structural index and electing optimum criteria for selecting candidate solutions are two fundamental requirements for a successful application of this method. We present a new criterion for determining the structural index. This criterion is based on the correlation between the total‐field anomaly and the estimates of an unknown base level. These estimates are obtained for each position of a moving data window along the observed profile and for several tentative values for the structural index. The tentative value for the structural index producing the smallest correlation is the best estimate of the correct structural index. We also propose a new criterion to select the best solutions from a set of previously computed candidate solutions, each one associated with a particular position of the moving data window. A current criterion is to select only those candidates producing a standard deviation for the vertical position of the source smaller than a threshold value. We propose that in addition to this criterion, only those candidates producing the best fit to the known quantities (combinations of anomaly and its gradients) be selected. The proposed modifications to Euler deconvolution can be implemented easily in an automated algorithm for locating the source position. The above results are grounded on a theoretical uniqueness and stability analysis, also presented in this paper, for the joint estimation of the source position, the base level, and the structural index in Euler deconvolution. This analysis also reveals that the vertical position and the structural index of the source cannot be estimated simultaneously because they are linearly dependent; the horizontal position and the structural index, on the other hand, are linearly independent. For a known structural index, estimates of both horizontal and vertical positions are unique and stable regardless of the value of the structural index. If this value is not too small, estimates of the base level for the total field are stable as well. The proposed modifications to Euler deconvolution were tested both on synthetic and real magnetic data. In the case of synthetic data, the proposed criterion always detected the correct structural index and good estimates of the source position were obtained, suggesting the present theoretical analysis may lead to a substantial enhancement in practical applications of Euler deconvolution. In the case of practical data (vertical component anomaly over an iron deposit in the Kursk district, Russia), the estimated structural index (corresponding to a vertical prism) was in accordance with the known geology of the deposit, and the estimates of the depth and horizontal position of the source compared favorably with results reported in the literature.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3