Seismic attribute selection for machine-learning-based facies analysis

Author:

Qi Jie1ORCID,Zhang Bo2ORCID,Lyu Bin1ORCID,Marfurt Kurt1ORCID

Affiliation:

1. The University of Oklahoma, School of Geosciences, Norman, Oklahoma, USA..

2. The University of Alabama, Department of Geological Sciences, Tuscaloosa, Alabama, USA.(corresponding author).

Abstract

Interpreters face two main challenges in seismic facies analysis. The first challenge is to define, or “label,” the facies of interest. The second challenge is to select a suite of attributes that can differentiate a target facies from the background reflectivity. Our key objective is to determine which seismic attributes can best differentiate one class of chaotic seismic facies from another using modern machine-learning technology. Although simple 1D histograms provide a list of candidate attributes, they do not provide insight into the optimum number or combination of attributes. To address this limitation, we have conducted an exhaustive search whereby we represent the target and background training facies by high-dimensional Gaussian mixture models (GMMs) for each potential attribute combination. The first step is to choose candidate attributes that may be able to differentiate chaotic mass-transport deposits and salt diapirs from the more conformal, coherent background reflectors. The second step is to draw polygons around the target and background facies to provide the labeled data to be represented by GMMs. Maximizing the distance between all GMM facies pairs provides the optimum number and combination of attributes. We use generative topographic mapping to represent the high-dimensional attribute data by a lower dimensional 2D manifold. Each labeled facies provides a probability density function on the manifold that can be compared to the probability density function of each voxel, providing the likelihood that a given voxel is a member of each of the facies. Our first example maps chaotic seismic facies associated with the development of salt diapirs and minibasins. Our second example successfully delineates karst collapse underlying a shale resource play from north Texas.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3