Siamese-Derived Attention Dense Network for Seismic Impedance Inversion

Author:

Wu Jiang1

Affiliation:

1. School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Seismic impedance inversion is essential for providing high-resolution stratigraphic analysis. Therefore, improving the accuracy while ensuring the efficiency of the inversion model is crucial for practical implementation. Recently, deep learning-based approaches have proven superior in capturing complex relationships between different data domains. In this paper, a Siamese-derived attention-dense network (SADN) is proposed, which incorporates both prediction and Siamese modules. In the prediction module, DenseNet serves as the backbone, and a channel attention mechanism is integrated into DenseNet to improve the weight of factors highly correlated with seismic impedance inversion. A bottleneck structure is employed in DenseNet to reduce computational costs. In the Siamese module, a weight-shared DenseNet is employed to compute the distribution similarity between the predicted impedance and the actual impedance, effectively regularizing the distribution similarity between the inverted seismic impedance and the recorded ground truth. The qualitative and quantitative results demonstrate the advantage of the SADN over commonly used traditional networks for seismic impedance inversion.

Publisher

MDPI AG

Reference38 articles.

1. Building more robust low-frequency models for seismic impedance inversion;Ray;First Break,2016

2. Seismic inversion based on 2D-CNNs and domain adaption;Wang;IEEE Trans. Geosci. Remote Sens.,2022

3. Deep learning for irregularly and regularly missing 3-D data reconstruction;Chai;IEEE Trans. Geosci. Remote Sens.,2020

4. Seismic reflection data interpolation with differential offset and shot continuation;Fomel;Geophysics,2003

5. f-x adaptive seismic-trace interpolation;Naghizadeh;Geophysics,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3