Antinoise performance of time-reverse imaging conditions for microseismic location

Author:

Yuan Jianlong1ORCID,Yu Jiashun1ORCID,Fu Xiaobo1,Han Chao1

Affiliation:

1. Chengdu University of Technology, College of Geophysics, Chengdu, Sichuan 610059, China.(corresponding author); .

Abstract

A suitable imaging condition is critical for the success of seismic imaging or source location. To understand what imaging condition to select for handling noisy data, the antinoise performance of the maximum amplitude imaging condition (MAIC), the autocorrelation imaging condition (ACIC), and the geometric mean imaging condition (GMIC) were comparatively studied. Synthetic microseismic data based on the Marmousi2 model, with different levels of synthetic Gaussian noise and field noise separately added, were used for tests. For Gaussian noise data, five signal-to-noise (S/N) ratio levels were considered, ranging from an absolutely clean level of [Formula: see text] to an extremely noisy level of [Formula: see text], in an increment of five times of the lower level of S/N. It was found that the antinoise ability of MAIC outperforms ACIC, and ACIC outperforms GMIC. This conclusion was confirmed to be valid for field noise in the further experiments performed, using 16 groups of industrial noise recordings from different areas. The statistical analysis shows these performance differences are statistically consistently significant. In terms of spatial resolution, it is the other way around; that is, GMIC outperforms ACIC, and ACIC outperforms MAIC. These suggest that in choosing a suitable imaging condition for time-reverse imaging location, one needs to consider the balance between the resolution demand and data quality requirement. If the data quality is very high, GMIC may be used to achieve a high-resolution location result. Conversely, if the data quality is poor, MAIC is a good choice for obtaining a robust location result. In between, ACIC or grouped GMIC is a proper approach to work out a balanced result for resolution demand and the noisy level provision.

Funder

National Natural Science Foundation of China

State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation

Sichuan Science and Technology Program

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3