Sparse magnetic vector inversion in spherical coordinates

Author:

Fournier Dominique1ORCID,Heagy Lindsey J.2ORCID,Oldenburg Douglas W.1

Affiliation:

1. University of British Columbia, Geophysical Inversion Facility, Department of Earth, Ocean, and Atmospheric Sciences, Vancouver, British Columbia, Canada.(corresponding author); .

2. The University of California, Department of Statistics, Berkeley, California, USA..

Abstract

Magnetic vector inversion (MVI) has received considerable attention over recent years for processing magnetic field data that are affected by remanent magnetization. However, the magnetization models obtained with current inversion algorithms are generally too smooth to be easily interpreted geologically. To address this, we have reviewed the MVI formulated in a spherical coordinate system. We tackle convergence issues posed by the nonlinear transformation from Cartesian to spherical coordinates by using an iterative sensitivity weighting approach and a scaling of the spherical parameters. The spherical formulation allows us to impose sparsity assumptions on the magnitude and direction of magnetization independently and, as a result, the inversion recovers simpler and more coherent magnetization orientations. The numerical implementation of our algorithm on large-scale problems is facilitated by discretizing the forward problem using tiled octree meshes. All of our results are generated using the open-source SimPEG software. We determine the enhanced capabilities of our algorithm on a large airborne magnetic survey collected over the Kevitsa Ni-Cu-platinum group elements (PGE) deposit. The recovered magnetization direction inside the ultramafic intrusion and in the host stratigraphy is consistent with laboratory measurements and provides evidence for tectonic deformation.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3