A new method for determination of magnetization direction

Author:

Dannemiller Neal1,Li Yaoguo1

Affiliation:

1. Colorado School of Mines, Center for Gravity, Electrical, and Magnetic Studies, Department of Geophysics, 1500 Illinois Street, Golden, Colorado 80401.

Abstract

The characterization and interpretation of magnetic anomalies rely upon knowledge of the total magnetization direction. Magnetization is usually assumed to consist solely, or primarily, of induced magnetization. The presence of strong remanent magnetization can alter the direction significantly and consequently adversely affect the interpretation, leading to erroneous sizes or shapes of causative bodies. Therefore, it is imperative to have some understanding of the total magnetization direction. We propose a method based upon the correlation between two quantities in magnetic data interpretation: the vertical gradient and the total gradient of the reduced-to-pole (RTP) field. This method is tested on both synthetic and field data sets. The results show that the method is effective in a variety of situations, including those with two-dimensional and three-dimensional dipping bodies and a field example that has a large deviation between the inducing field direction and the total magnetization direction.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3