Deep learning for relative geologic time and seismic horizons

Author:

Geng Zhicheng1ORCID,Wu Xinming2ORCID,Shi Yunzhi1ORCID,Fomel Sergey1ORCID

Affiliation:

1. The University of Texas at Austin, John A. and Katherine G. Jackson School of Geosciences, Bureau of Economic Geology, University Station, Box X, Austin, Texas 78713-8972, USA..

2. University of Science and Technology of China, School of Earth and Space Sciences, Hefei, China.(corresponding author).

Abstract

Constructing a relative geologic time (RGT) image from a seismic image is crucial for seismic structural and stratigraphic interpretation. In conventional methods, automatic RGT estimation from a seismic image is typically based on only local image features, which makes it challenging to cope with discontinuous structures (e.g., faults and unconformities). We have considered the estimation of 2D RGT images as a regression problem, where we design a deep convolutional neural network (CNN) to directly and automatically compute an RGT image from a 2D seismic image. This CNN consists of three parts: an encoder, a decoder, and a refinement module. We train this CNN by using 2080 pairs of synthetic input seismic images and target RGT images, and then we test it on 960 testing seismic images. Although trained with only synthetic images, the network can generate accurate results on real seismic images. Multiple field examples show that our CNN-based method is significantly superior to conventional methods, especially in dealing with complex structures such as crossing faults and complicatedly folded horizons, without the need of any manual picking.

Funder

Texas Consortium for Computation Seismology

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3