Quaternion-based sparse tight frame for multicomponent signal recovery

Author:

Zhao Qiang1ORCID,Du Qizhen1ORCID,Yasin Qamar1,Li Qingqing1ORCID,Fu Liyun1ORCID

Affiliation:

1. China University of Petroleum (East China), Key Laboratory of Deep Oil and Gas, Qingdao 266580, China; Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China and China University of Petroleum (East China), Key Laboratory of Geophysical Prospecting, CNPC, Qingdao 266580, China.(corresponding author); .

Abstract

Multicomponent noise attenuation often presents more severe processing challenges than scalar data owing to the uncorrelated random noise in each component. Meanwhile, weak signals merged in the noise are easier to degrade using the scalar processing workflows while ignoring their possible supplement from other components. For seismic data preprocessing, transform-based approaches have achieved improved performance on mitigating noise while preserving the signal of interest, especially when using an adaptive basis trained by dictionary-learning methods. We have developed a quaternion-based sparse tight frame (QSTF) with the help of quaternion matrix and tight frame analyses, which can be used to process the vector-valued multicomponent data by following a vectorial processing workflow. The QSTF is conveniently trained through iterative sparsity-based regularization and quaternion singular-value decomposition. In the quaternion-based sparse domain, multicomponent signals are orthogonally represented, which preserve the nonlinear relationships among multicomponent data to a greater extent as compared with the scalar approaches. We test the performance of our method on synthetic and field multicomponent data, in which component-wise, concatenated, and long-vector models of multicomponent data are used as comparisons. Our results indicate that more features, specifically the weak signals merged in the noise, are better recovered using our method than others.

Funder

National Science Foundation of China

China National Petroleum Corporation

China National “111” Foreign Experts Introduction Plan for Tight Oil & Gas Geology and Exploration

Deep-Ultradeep Oil & Gas Geophysical Exploration

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3