Nonlinear inversion of seismic amplitude variation with offset for an effective stress parameter

Author:

Chen Huaizhen1ORCID,Li Junxiao2ORCID,Innanen Kristopher A.3ORCID

Affiliation:

1. Tongji University, Institute for Advanced Study, School of Ocean and Earth Science, State Key Laboratory of Marine Geology, Shanghai, 200092, China and University of Calgary, Department of Geoscience, Calgary, Alberta, Canada.(corresponding author).

2. PETRONAS Research Sdn Bhd, Exploration Technology, Group Research and Technology, Malaysia..

3. University of Calgary, Department of Geoscience, Calgary, Alberta, Canada..

Abstract

Effective stress estimates play important roles in reservoir characterization, for instance, in guiding the selection of fracturing areas in unconventional reservoirs. Based on Gassmann’s fluid substitution model, we have set up a workflow for nonlinear inversion of seismic data for dry rock moduli, fluid factors, and a stress-sensitive parameter. We first make an approximation within the fluid substitution equation, replacing the porosity term with a stress-sensitive parameter. We then derive a linearized reflection coefficient as a function of a stress-parameter reflectivity and reexpress it in terms of elastic impedance (EI). An amplitude-variation-with-offset (AVO) inversion workflow is set up, in which the seismic data are transformed to EI, after stacking within five incidence angle ranges; these are then inverted to determine the stress-sensitive parameter. The two-step process involves two inversions with significantly different properties. The first is a model-based least-squares inversion to estimate EI; the second is a more complex nonlinear inversion of the EI for a set of unknowns including the stress-sensitive parameter. Motivated by an interest in hybridizing AVO and full-waveform inversion (FWI), we set the latter step up to resemble some features of a published AVO-FWI formulation. The approach is subjected to synthetic validation, which permits us to analyze the response and test the stability of the workflow. We finally apply the workflow to real data acquired over a gas-bearing reservoir, which reveals that the approach generates potential indicators of fluid presence and stress prediction.

Funder

Fundamental Research Funds for the Central Universities

Natural Science and Engineering Research Council of Canada

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3