Affiliation:
1. University of Calgary, Department of Geoscience, Calgary, Alberta, Canada..
2. SINOPEC Key Lab of Multi-Component Seismic Technology, Beijing, China..
Abstract
P- and S-wave inverse quality factors quantify seismic wave attenuation, which is related to several key reservoir parameters (porosity, saturation, and viscosity). Estimating the inverse quality factors from observed seismic data provides additional and useful information during gas-bearing reservoir prediction. First, we have developed an approximate reflection coefficient and attenuative elastic impedance (QEI) in terms of the inverse quality factors, and then we established an approach to estimate elastic properties (P- and S-wave impedances, and density) and attenuation (P- and S-wave inverse quality factors) from seismic data at different incidence angles and frequencies. The approach is implemented as a two-step inversion: a model-based and damped least-squares inversion for QEI, and a Bayesian Markov chain Monte Carlo inversion for the inverse quality factors. Synthetic data tests confirm that P- and S-wave impedances and inverse quality factors are reasonably estimated in the case of moderate data error or noise. Applying the established approach to a real data set is suggestive of the robustness of the approach, and furthermore that physically meaningful inverse quality factors can be estimated from seismic data acquired over a gas-bearing reservoir.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献