Dictionary learning with convolutional structure for seismic data denoising and interpolation

Author:

Almadani Murad1ORCID,Waheed Umair bin2,Masood Mudassir1ORCID,Chen Yangkang3ORCID

Affiliation:

1. King Fahd University of Petroleum and Minerals, Department of Electrical Engineering, Dhahran 31261, Saudi Arabia.(corresponding author); .

2. King Fahd University of Petroleum and Minerals, Department of Geosciences, Dhahran 31261, Saudi Arabia..

3. Zhejiang University, School of Earth Sciences, Hangzhou 310058, China..

Abstract

Seismic data inevitably suffer from random noise and missing traces in field acquisition. This limits the use of seismic data for subsequent imaging or inversion applications. Recently, dictionary learning has gained remarkable success in seismic data denoising and interpolation. Variants of the patch-based learning technique, such as the K-singular value decomposition (K-SVD) algorithm, have been shown to improve denoising and interpolation performance compared with the analytic transform-based methods. However, patch-based learning algorithms work on overlapping patches of data and do not take the full data into account during reconstruction. In contrast, the data patches (convolutional sparse coding [CSC]) model treats signals globally and, therefore, has shown superior performance over patch-based methods in several image processing applications. As a consequence, we test use of the CSC model for seismic data denoising and interpolation. In particular, we use the local block coordinate descent (LoBCoD) algorithm to reconstruct missing traces and clean seismic data from noisy input. The denoising and interpolation performance of the LoBCoD algorithm has been compared with that of K-SVD and orthogonal matching pursuit (OMP) algorithms using synthetic and field data examples. We have used three quality measures to test the denoising accuracy: the peak signal-to-noise ratio (PS/N), the relative L2-norm of the error (RLNE), and the structural similarity index (SSIM). We find that LoBCoD performs better than K-SVD and OMP for all test cases in improving PS/N and SSIM and in reducing RLNE. These observations suggest a huge potential of the CSC model in seismic data denoising and interpolation applications.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3