Semi‐blind‐trace algorithm for self‐supervised attenuation of trace‐wise coherent noise

Author:

Abedi Mohammad Mahdi1ORCID,Pardo David123,Alkhalifah Tariq4

Affiliation:

1. Basque Center for Applied Mathematics Bilbao Spain

2. Department of Mathematics University of the Basque Country (UPV/EHU) Leioa Spain

3. Ikerbasque Basque Foundation for Science Bilbao Spain

4. King Abdullah University of Science and Technology Thuwal Saudi Arabia

Abstract

AbstractTrace‐wise noise is a type of noise often seen in seismic data, which is characterized by vertical coherency and horizontal incoherency. Using self‐supervised deep learning to attenuate this type of noise, the conventional blind‐trace deep learning trains a network to blindly reconstruct each trace in the data from its surrounding traces; it attenuates isolated trace‐wise noise but causes signal leakage in clean and noisy traces and reconstruction errors next to each noisy trace. To reduce signal leakage and improve denoising, we propose a new loss function and masking procedure in a semi‐blind‐trace deep learning framework. Our hybrid loss function has weighted active zones that cover masked and non‐masked traces. Therefore, the network is not blinded to clean traces during their reconstruction. During training, we dynamically change the masks' characteristics. The goal is to train the network to learn the characteristics of the signal instead of noise. The proposed algorithm enables the designed U‐net to detect and attenuate trace‐wise noise without having prior information about the noise. A new hyperparameter of our method is the relative weight between the masked and non‐masked traces' contribution to the loss function. Numerical experiments show that selecting a small value for this parameter is enough to significantly decrease signal leakage. The proposed algorithm is tested on synthetic and real off‐shore and land data sets with different noises. The results show the superb ability of the method to attenuate trace‐wise noise while preserving other events. An implementation of the proposed algorithm as a Python code is also made available.

Funder

Ministerio de Ciencia e Innovación

Eusko Jaurlaritza

Publisher

Wiley

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3